环球观点:边缘人工智能:部署前需要考虑的3个技巧
即使用户经常在移动设备上访问这些服务,计算结果仍然存在于人工智能的云使用中。
随着人工智能 (AI) 的成熟,采用率继续增加。根据最近的研究,35% 的组织正在使用人工智能,42% 的组织正在探索其潜力。虽然人工智能在云中得到了很好的理解并大量部署,但它在边缘仍然处于萌芽状态,并面临一些独特的挑战。
(资料图)
许多人全天都在使用人工智能,从汽车导航到跟踪步骤,再到与数字助理交谈。即使用户经常在移动设备上访问这些服务,计算结果仍然存在于人工智能的云使用中。更具体地说,一个人请求信息,该请求由云中的中央学习模型处理,然后将结果发送回该人的本地设备。
与云端 AI 相比,边缘 AI 的理解和部署频率更低。从一开始,人工智能算法和创新就依赖于一个基本假设——所有数据都可以发送到一个中心位置。在这个中心位置,算法可以完全访问数据。这使得算法能够像大脑或中枢神经系统一样构建其智能,对计算和数据拥有完全的权限。
但是,边缘的人工智能是不同的。它将智能分布在所有细胞和神经上。通过将智能推向边缘,我们赋予这些边缘设备代理权。这在医疗保健和工业制造等许多应用和领域中至关重要。
在边缘部署人工智能有三个主要原因。
保护个人身份信息 (PII)
首先,一些处理 PII 或敏感 IP(知识产权)的组织更愿意将数据留在其来源处——医院的成像机器或工厂车间的制造机器中。这可以降低通过网络传输数据时可能发生的“偏移”或“泄漏”风险。
最小化带宽使用
其次是带宽问题。将大量数据从边缘传送到云端会阻塞网络,在某些情况下是不切实际的。健康环境中的成像机器生成如此庞大的文件以致无法将它们传输到云或需要数天才能完成传输的情况并不少见。
简单地在边缘处理数据会更有效,尤其是当洞察力旨在改进专有机器时。过去,计算的移动和维护难度要大得多,因此需要将这些数据移动到计算位置。这种范式现在受到挑战,现在数据通常更重要且更难管理,导致用例保证将计算移动到数据位置。
避免延迟
在边缘部署 AI 的第三个原因是延迟。互联网速度很快,但不是实时的。如果存在毫秒很重要的情况,例如协助手术的机械臂或时间敏感的生产线,组织可能会决定在边缘运行 AI。
边缘人工智能面临的挑战以及如何解决这些挑战
尽管有这些好处,但在边缘部署 AI 仍然存在一些独特的挑战。以下是您应该考虑的一些提示,以帮助应对这些挑战。
模型训练的好与坏结果
大多数 AI 技术使用大量数据来训练模型。然而,在边缘的工业用例中,这通常会变得更加困难,因为大多数制造的产品都没有缺陷,因此被标记或注释为良好。由此产生的“好结果”与“坏结果”的不平衡使得模型更难学会识别问题。
依赖于没有上下文信息的数据分类的纯 AI 解决方案通常不容易创建和部署,因为缺乏标记数据,甚至会发生罕见事件。为 AI 添加上下文(或称为以数据为中心的方法)通常会在最终解决方案的准确性和规模方面带来好处。事实是,虽然人工智能通常可以取代人类手动完成的平凡任务,但在构建模型时,它会极大地受益于人类的洞察力,尤其是在没有大量数据可供使用的情况下。
从经验丰富的主题专家那里得到承诺,与构建算法的数据科学家密切合作,为 AI 学习提供了一个快速启动。
AI 无法神奇地解决或提供每个问题的答案
通常有许多步骤进入输出。例如,工厂车间可能有许多工作站,它们可能相互依赖。一个过程中工厂某个区域的湿度可能会影响稍后在不同区域的生产线中另一个过程的结果。
人们通常认为人工智能可以神奇地拼凑所有这些关系。虽然在许多情况下可以,但它也可能需要大量数据和很长时间来收集数据,从而导致非常复杂的算法不支持可解释性和更新。
人工智能不能生活在真空中。捕捉这些相互依赖关系将把边界从一个简单的解决方案推向一个可以随着时间和不同部署而扩展的解决方案。
缺乏利益相关者的支持会限制人工智能的规模
如果组织中的一群人对它的好处持怀疑态度,则很难在整个组织中扩展 AI。获得广泛支持的最好(也许是唯一)方法是从一个高价值、困难的问题开始,然后用人工智能解决它。
在奥迪,我们考虑解决焊枪电极更换频率的问题。但是电极成本低,这并没有消除人类正在做的任何平凡的任务。相反,他们选择了焊接工艺,这是整个行业普遍认同的难题,并通过人工智能显着提高了工艺质量。这激发了整个公司工程师的想象力,他们研究如何在其他流程中使用人工智能来提高效率和质量。
平衡边缘 AI 的优势和挑战
在边缘部署 AI 可以帮助组织及其团队。它有可能将设施转变为智能边缘,提高质量,优化制造过程,并激励整个组织的开发人员和工程师探索他们如何整合人工智能或推进人工智能用例,包括预测分析、提高效率的建议或异常检测。但它也带来了新的挑战。作为一个行业,我们必须能够在部署它的同时减少延迟、增加隐私、保护 IP 并保持网络平稳运行。
标签:
今日聚焦!美国高校研发出锂电池"完美替代者"
每日简讯:不惧风雨,山地骑行
当前速递!湖南大学无锡半导体先进制造创新中心正式揭牌
即时:通过数字化转型实现环境可持续发展
新资讯:3GW太阳能光伏组件项目:致力于成为行业领先专家 用光伏智造引领产业发展
快看:乘联会数据显示磷酸铁锂电池装机量反超三元锂
环球热点!丰田研发新型电动汽车电池续航提升15%
每日聚焦:研究称纯电动汽车比氢燃料动力锂电池车更环保
天天速看:从电池安全问题看离实用不远的电池技术
环球快资讯丨动力锂电池衰减待明确政策大幅提升技术门槛
- 11-02今日聚焦!美国高校研发出锂电池"完美替代者"
- 11-02每日简讯:不惧风雨,山地骑行
- 11-02当前速递!湖南大学无锡半导体先进制造创新中心正式揭牌
- 11-02即时:通过数字化转型实现环境可持续发展
- 11-02新资讯:3GW太阳能光伏组件项目:致力于成为行业领先专家 用光伏智造引领产业发展
- 11-02快看:乘联会数据显示磷酸铁锂电池装机量反超三元锂
- 11-02环球热点!丰田研发新型电动汽车电池续航提升15%
- 11-02每日聚焦:研究称纯电动汽车比氢燃料动力锂电池车更环保
- 11-02天天速看:从电池安全问题看离实用不远的电池技术
- 11-02环球快资讯丨动力锂电池衰减待明确政策大幅提升技术门槛
- 11-02环球讯息:钛酸锂电池技术亮点多能上演逆袭之战吗?
- 11-02天天短讯!变频器50个术语详解——了解变频器的设计、使用、实施和维护
- 11-02天天视讯!新品 | P22多圈绝对值编码器,重磅来袭!
- 11-02全球微动态丨“聪慧的” 编码器- 海德汉集团最新推出的电主轴编码器
- 11-02【全球报资讯】首台套!芯运智能半导体工厂AMHS系统下线
- 11-02世界热议:全球风电创纪录,中国贡献超八成!
- 11-02世界最新:5G和Wi-Fi 6,将成为驱动工业互联的一双“妙手”
- 11-02世界热消息:数字化转型的关键在于节省时间
- 11-02环球热讯:工业机器人的触觉传感器有哪些?传感器作用是什么?
- 11-02环球热文:协作机器人应用领域有哪些缺点
- 11-02焦点观察:什么是智能制造?智能制造面临怎样挑战?
- 11-02环球资讯:为什么说养老机器人大有可为?
- 11-02动态:新能源车充换电需求上升 创新补能方式加速涌现
- 11-02环球热推荐:新能源汽车的发展是一种潮流是汽车行业发展不可逆转的趋势
- 11-02当前速看:新能源汽车必将是未来汽车产业的重中之重
- 11-02全球新消息丨人工智能技术与智慧医疗产业的融合力度将不断加大
- 11-02世界视讯!平民化仿真 工业软件突破连
- 11-02【环球播资讯】新一代机器控制器——开放式自动化控制器的五个关键特征
- 11-02头条:光伏巨头们的“锁硅焦虑”
- 11-02每日精选:5G技术是我国经济社会发展不可或缺的一部分